Role of the Primate Ventral Tegmental Area in Reinforcement and Motivation
نویسندگان
چکیده
Monkey electrophysiology suggests that the activity of the ventral tegmental area (VTA) helps regulate reinforcement learning and motivated behavior, in part by broadcasting prediction error signals throughout the reward system. However, electrophysiological studies do not allow causal inferences regarding the activity of VTA neurons with respect to these processes because they require artificial manipulation of neuronal firing. Rodent studies fulfilled this requirement by demonstrating that electrical and optogenetic VTA stimulation can induce learning and modulate downstream structures. Still, the primate dopamine system has diverged significantly from that of rodents, exhibiting greatly expanded and uniquely distributed cortical and subcortical innervation patterns. Here, we bridge the gap between rodent perturbation studies and monkey electrophysiology using chronic electrical microstimulation of macaque VTA (VTA-EM). VTA-EM was found to reinforce cue selection in an operant task and to motivate future cue selection using a Pavlovian paradigm. Moreover, by combining VTA-EM with concurrent fMRI, we demonstrated that VTA-EM increased fMRI activity throughout most of the dopaminergic reward system. These results establish a causative role for primate VTA in regulating stimulus-specific reinforcement and motivation as well as in modulating activity throughout the reward system.
منابع مشابه
Effect of Transient Inactivation of Ventral Tegmental Area on the Expression and Acquisition of Nicotine-Induced Conditioned Place Preference in Rats
Background: Nicotine can activate dopaminergic neurons within the ventral tegmental area (VTA). However, there is no evidence about complete inhibition of VTA on nicotine reinforcement. Methods: in the present study, we used conditioned-place preference (CPP) method to study the effect of transient inhibition of left and/or right side of the VTA by lidocaine on nicotine reward properties. Male ...
متن کاملVentral Tegmental Area Microinjected-SKF38393 Increases Regular Chow Intake in 18 Hours Food Deprived Rats
Ventral tegmental area (VTA) dopamine neurons play an important role in reward mechanisms of food intake, and VTA dopamine receptors exist on the terminal of glutamatergic and GABAergic neurons and regulate GABA and glutamate release. To our knowledge, there is no evidence to show that VTA D1 dopamine receptors play a role in regular chow intake. In this paper, the effect of SKF38393, a D1 rece...
متن کاملRole of Orexin-1 Receptor Within the Ventral Tegmental Area in Mediating Stress- and Morphine Priming-induced Reinstatement of Conditioned Place Preference in Rats
Introduction: Orexin-containing neurons exist in the lateral hypothalamic region, sending their projections toward mesolimbic regions such as the Ventral Tegmental Area (VTA). Methods: In the current study, a Reinstatement model is used to examine the effects of intra-VTA administration of SB334867 as an Orexin-1 Receptor (OX1R) antagonist on drug priming- and Forced Swim Stress (FSS)-induced ...
متن کاملRole of the Orexinergic System Within the Ventral Tegmental Area in the Development of Sensitization to Morphine Induced By Lateral Hypothalamus Stimulation
The lateral hypothalamus (LH) has long been known to implicate in the addictive behaviors of drugs of abuse. The ventral tegmental area (VTA) is a major area of the mesolimbic system that is strongly involved in the development of morphine sensitization. The current study aimed to examine the role of intra-VTA orexin receptors in the LH stimulation-induced sensitization to the antinociceptive r...
متن کاملLateral hypothalamus chemical stimulation-induced antinociception was attenuated by injection of dopamine D1 and D2 receptor antagonists in the ventral tegmental area
Introduction: Stimulation or inactivation of the lateral hypothalamus (LH) produces antinociception. Studies showed a role for the ventral tegmental area (VTA) in the antinociception induced by LH chemical stimulation through the orexinergic receptors. In this study, we assessed the role of intra-VTA dopamine D1 and D2 receptors in antinociceptive effects of cholinergic agonist, carbachol, m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 24 شماره
صفحات -
تاریخ انتشار 2014